Sélectionner une page

Références bibliographiques

Du livret “Quelques arbres méditerranéens”

  1. Narjisse, H., Elhonsali, M. A., & Olsen, J. D. (1995). Effects of oak (Quercus ilex) tannins on digestion and nitrogen balance in sheep and goats. Small Ruminant Research, 18(3), 201–206.
  2. Güllüce, M., Adıgüzel, A., Öğütçü, H., Şengül, M., Karaman, İ., & Şahin, F. (2004). Antimicrobial effects of Quercus ilex L. extract. Phytotherapy Research, 18(3), 208–211. https://doi.org/10.1002/ptr.1419
  3. J.-C. Rameau et al, (2008). Flore Forestière Française, Tome 3 : Région méditerranéenne.
  4. Oliveira, I. V. O., Baptista, P., Bento, A., & Alberto, J. (2011). Oliveira et al., 2011. Arbutus unedo L. and its benefits on human health. 50(2), 73–85.
  5. Morgado, S., Morgado, M., Plácido, A. I., Roque, F., & Duarte, A. P. (2018). Arbutus unedo L.: From traditional medicine to potential uses in modern pharmacotherapy. In Journal of Ethnopharmacology (Vol. 225, pp. 90–102). Elsevier Ireland Ltd. https://doi.org/10.1016/j.jep.2018.07.004
  6. Taviano, M. F., Marino, A., Trovato, A., Bellinghieri, V., Melchini, A., Dugo, P., Cacciola, F., Donato, P., Mondello, L., Güvenç, A., Pasquale, R. De, & Miceli, N. (2013). Juniperus oxycedrus L. subsp. oxycedrus and Juniperus oxycedrus L. subsp. macrocarpa (Sibth. & Sm.) Ball. “berries” from Turkey: Comparative evaluation of phenolic profile, antioxidant, cytotoxic and antimicrobial activities. Food and Chemical Toxicology, 58, 22–29. https://doi.org/10.1016/j.fct.2013.03.049
  7. Ismail, A., Lamia, H., Mohsen, H., & Bassem, J. (2011). Chemical Composition of Juniperus oxycedrus L. subsp macrocarpa Essential Oil and Study of Their Herbicidal Effects on Germination and Seedling Growth of Weeds. Asian Journal of Applied Sciences, 4(8), 771–779. https://doi.org/10.3923/ajaps.2011.771.779
  8. Karaman, I., Şahin, F., Güllüce, M., Öǧütçü, H., Şengül, M., & Adigüzel, A. (2003). Antimicrobial activity of aqueous and methanol extracts of Juniperus oxycedrus L. Journal of Ethnopharmacology, 85(2–3), 231–235. https://doi.org/10.1016/S0378-8741(03)00006-0
  9. Bachir Raho, G., Otsmane, M., & Sebaa, F. (2017). Inhibitory effects of Juniperus oxycedrus essential oils against some pathogens. Journal of Microbiology and Biotechnology, 2(1), 29–33. https://doi.org/10.11648/j.ijmb.20170201.16
  10. Orhan, N., Aslan, M., Demirci, B., & Ergun, F. (2012). A bioactivity guided study on the antidiabetic activity of Juniperus oxycedrus subsp. oxycedrus L. leaves. Journal of Ethnopharmacology, 140(2), 409–415. https://doi.org/10.1016/j.jep.2012.01.042
  11. Dob, T., Dahmane, D., & Chelghoum, C. (2006). Essential Oil Composition of Juniperusï¿¿Oxycedrus. Pharmaceutical Biology, 44(1), 1–6. https://doi.org/10.1080/13880200500530922
  12. Kaya, M., Khadem, S., Cakmak, Y. S., Mujtaba, M., Ilk, S., Akyuz, L., Salaberria, A. M., Labidi, J., Abdulqadir, A. H., Deligöz, E., & Deligöz, D. (2018). Antioxidative and antimicrobial edible chitosan films blended with stem, leaf and seed extracts of Pistacia terebinthus for active food packaging. https://doi.org/10.1039/c7ra12070b
  13. Köten, M. (2021). Influence of roasted and unroasted terebinth (Pistacia terebinthus) on the functional, chemical and textural properties of wire-cut cookies. Food Science and Technology (Brazil), 41(1), 245–253. https://doi.org/10.1590/fst.17020
  14. Ciftci, H., Ozkaya, A., & Kariptas, E. (2009). Determination of fatty acids, vitamins and trace elements in Pistacia terebinthus coffee. Journal of Food, Agriculture and Environment, 7(3–4), 72–74.
  15. Ozcan, M. (2004). Characteristics of fruit and oil of terebinth (Pistacia terebinthus L) growing wild in Turkey. Wiley Online Library. https://doi.org/10.1002/jsfa.1632
  16. Durmaz, G., & Gökmen, V. (2011). Changes in oxidative stability, antioxidant capacity and phytochemical composition of Pistacia terebinthus oil with roasting. Food Chemistry, 128(2), 410–414. https://doi.org/10.1016/j.foodchem.2011.03.044
  17. Eva M. Giner-Larza1 , Salvador Máñez1 , Rosa M. Giner1 , M. Carmen Recio1 , José M. Prieto1 , Miguel Cerdá-Nicolás2, J. L. R. (2002). Anti-Inflammatory Triterpenes from Pistacia terebinthus Galls. Georg Thieme Verlag Stuttgart · New York, Planta Med. https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-2002-26749
  18. Kallis, M., Sideris, K., Kopsahelis, N., Bosnea, L., Kourkoutas, Y., Terpou, A., & Kanellaki, M. (2019). Pistacia terebinthus resin as yeast immobilization support for alcoholic fermentation. Foods, 8(4), 1–17. https://doi.org/10.3390/foods8040127
  19. Kavak, D. D., Altiok, E., Bayraktar, O., & Ülkü, S. (2010). Pistacia terebinthus extract: As a potential antioxidant, antimicrobial and possible β-glucuronidase inhibitor. Journal of Molecular Catalysis B: Enzymatic, 64(3–4), 167–171. https://doi.org/10.1016/j.molcatb.2010.01.029
  20. Hamlat, N., Benarfa, A., Brahim Beladel, ·, Samir Begaa, ·, Messaoudi, · Mohammed, & Hassani, A. (2019). Assessment of the contents of essential and potentially toxic elements in Pistacia terebinthus L. and Pistacia lentiscus L. by INAA technique. 322, 1127–1131. https://doi.org/10.1007/s10967-019-06815-z
  21. Bozorgi, M., Memariani, Z., Mobli, M., Hossein, M., Surmaghi, S., Shams-Ardekani, M. R., & Rahimi, R. (2013). A Review of Their Traditional Uses, Phytochemistry, and Pharmacology. The Scientific World Journal, 2013, 33. https://doi.org/10.1155/2013/219815
  22. Laksaeva, E. A. (2018). Fruits of plants of Amelanchier genus (Amelanchier Medic) as source of biologically active substances and minerals. I.P. Pavlov Russian Medical Biological Herald, 26(2), 296–304. https://doi.org/10.23888/pavlovj2018262296-304
  23. Ochmian, I., Kubus, M., & Dobrowolska, A. (2013). Description of plants and assessment of chemical properties of three species from the Amelanchier genus. Dendrobiology, 70, 59–64. https://doi.org/10.12657/denbio.070.006
  24. Caputo, L., Nazzaro, F., Souza, L. F., Aliberti, L., De Martino, L., Fratianni, F., Coppola, R., & De Feo, V. (2017). Laurus nobilis: Composition of essential oil and its biological activities. Molecules, 22(6), 1–11. https://doi.org/10.3390/molecules22060930
  25. Patrakar, R., Mansuriya, M., & Patil, P. (2012). Pharmacological Review on Laurus Nobilis. International Journal of Pharmaceutical and Chemical Sciences, 1(2), 595–602. www.ijpcsonline.com
  26. Simić, M., Kundaković, T., & Kovačević, N. (2003). Preliminary assay on the antioxidative activity of Laurus nobilis extracts. Fitoterapia, 74(6), 613–616. https://doi.org/10.1016/S0367-326X(03)00143-6
  27. Panza, E., Tersigni, M., Iorizzi, M., Zollo, F., De Marino, S., Festa, C., Napolitano, M., Castello, G., Ialenti, A., & Ianaro, A. (2011). Lauroside B, a megastigmane glycoside from Laurus nobilis (bay laurel) leaves, induces apoptosis in human melanoma cell lines by inhibiting NF-κB activation. Journal of Natural Products, 74(2), 228–233. https://doi.org/10.1021/np100688g
  28. Barla, A., Topçu, G., Öksüz, S., Tümen, G., & Kingston, D. G. I. (2007). Identification of cytotoxic sesquiterpenes from Laurus nobilis L. Food Chemistry, 104(4), 1478–1484. https://doi.org/10.1016/J.FOODCHEM.2007.02.019
  29. Luigia Longo and Giuseppe Vasapollo. (2005). Anthocyanins from Bay (Laurus nobilis L.) Berries. Journal of Agricultural and Food Chemistry, 53(20), 8063–8067.
  30. Dall’Acqua, S., Cervellati, R., Speroni, E., Costa, S., Guerra, M. C., & Laura Stella. (2009). Phytochemical Composition and Antioxidant Activity of Laurus nobilis L. Leaf Infusion. Journal of Medicinal Food, 12(4).
  31. Haichour, N., Mezaache-aichour, S., Soltani, E., Kada, S., Martínez, J. R., Esteban, M. A., Nicklin, J., & Zerroug, M. M. (2021). Lyophilized aqueous extract of Pinus halepensis ( MILL .) Resin : chemical composition , antioxidant and antidermatophytic activities. Journal of Microbiology, Biotechnology and Food Sciences, 1–6.
  32. Maestre, F. T., & Cortina, J. (2004). Are Pinus halepensis plantations useful as a restoration tool in semiarid Mediterranean areas? Forest Ecology and Management, 198(1–3), 303–317. https://doi.org/10.1016/J.FORECO.2004.05.040
  33. El Omari, N., Fatima Ezzahrae, G., El Menyiy, N., Benali, T., Aanniz, T., Chamkhi, I., Balahbib, A., Taha, D., Shariati, M. A., Zengin, G., El-Shazly, M., & Bouyahya, A. (2021). Phytochemical and biological activities of Pinus halepensis mill., and their ethnomedicinal use. Journal of Ethnopharmacology, 268, 113661. https://doi.org/10.1016/J.JEP.2020.113661
  34. Pasqualini, V., Robles, C., Garzino, S., Greff, S., Bousquet-Melou, A., & Bonin, G. (2003). Phenolic compounds content in Pinus halepensis Mill. needles: a bioindicator of air pollution. Chemosphere, 52(1), 239–248. https://doi.org/10.1016/S0045-6535(03)00268-6
  35. Bouzenna, H., Samout, N., Fatma, G., Dhibi, S., Saidi, I., Smida, A., Khdher, A., Akermi, S., Elfkih, A., & Hfaiedh, N. (2021). Phytochemical , antioxidant and antibacterial activities of the aqueous and ethanol extracts of Pinus halepensis. 8(1), 24–28. https://doi.org/10.15562/phytomedicine.2021.157
  36. Gardeli, C., Vassiliki, P., Athanasios, M., Kibouris, T., & Komaitis, M. (2008). Essential oil composition of Pistacia lentiscus L. and Myrtus communis L.: Evaluation of antioxidant capacity of methanolic extracts. Food Chemistry, 107(3), 1120–1130. https://doi.org/10.1016/J.FOODCHEM.2007.09.036
  37. Benhammou, N., Atik, F., & Panovska, T. K. (2008). Antioxidant and antimicrobial activities of the Pistacia lentiscus and Pistacia atlantica extracts. African Journal of Pharmacy and Pharmacology, 2(2), 022–028.
  38. Filella, I., Llusià, J., Piñol, J., & Peñuelas, J. (1998). Leaf gas exchange and fluorescence of Phillyrea latifolia, Pistacia lentiscus and Quercus ilex saplings in severe drought and high temperature conditions. Environmental and Experimental Botany, 39(3), 213–220. https://doi.org/10.1016/S0098-8472(97)00045-2
  39. Al-Said, M. S., Ageel, A. M., Parmar, N. S., & Tariq, M. (1986). Evaluation of mastic, a crude drug obtained from Pistacia lentiscus for gastric and duodenal anti-ulcer activity. Journal of Ethnopharmacology, 15(3), 271–278. https://doi.org/10.1016/0378-8741(86)90165-0
  40. Baunthiyal, M., Semwal, P., & Dwivedi, S. (2021). Haemostatic Potential of Medicinal Plants and Their Phytochemicals. Journal of Mountain Research, 16(1), 93–102. https://doi.org/10.51220/jmr.v16i1.8
  41. Janakat, S., & Al-Merie, H. (2002). Evaluation of hepatoprotective effect of Pistacia lentiscus, Phillyrea latifolia and Nicotiana glauca. Journal of Ethnopharmacology, 83(1–2), 135–138. https://doi.org/10.1016/S0378-8741(02)00241-6
  42. Bauer, R., Czerwí, M. E., Melzig, M. F., & Czerwí Nska, M. E. (2018). Cornus mas and Cornus Officinalis-Analogies and Differences of Two Medicinal Plants Traditionally Used. Frontiers in Pharmacology | Www.Frontiersin.Org, 1, 894. https://doi.org/10.3389/fphar.2018.00894
  43. Szczepaniak, O. M., Kobus-Cisowska, J., Kusek, W., & Przeor, M. (2019). Functional properties of Cornelian cherry (Cornus mas L.): a comprehensive review. European Food Research and Technology, 245(10), 2071–2087. https://doi.org/10.1007/s00217-019-03313-0
  44. Ben Ali, M. J., Guesmi, F., Harrath, A. H., Alwasel, S., Hedfi, A., Ncib, S., Landoulsi, A., Aldahmash, B., & Ben-Attia, M. (2015). Investigation of antiulcer and antioxidant activity of Juniperus phoenicea L. (1753) essential oil in an experimental rat model. Biological and Pharmaceutical Bulletin, 38(11), 1738–1746. https://doi.org/10.1248/bpb.b15-00412
  45. Derwich, E., Benziane, Z., & Boukir, A. (2010). Chemical composition of leaf essential oil of juniperus phoenicea and evaluation of its antibacterial activity. International Journal of Agriculture and Biology, 12(2), 199–204.
  46. Ali, S. A., Rizk, Z., & Mohamed Mousta-Fa, M. (2010). Protective role of Juniperus phoenicea and Cupressus sempervirens against CCl4. World J Gastrointest Pharmacol Ther, 1(6). https://doi.org/10.4292/wjgpt.v1.i6.123
  47. Bouzouita, N., Kachouri, F., Ben Halima, M., & Moncef, M. (2006). Composition chimique, activités antioxydante antimicrobienne et insecticide de l’huile essentielle de Juniperus phoenicea. Actes Du Séminaire International “Les Plantes & Parfum, Aromatiques et Médicinales” – Revue Des Régions Arides., 330–336.
  48. Mazari, K., Bendimerad, N., Bekhechi, C., & Fernandez, X. (2010). Chemical composition and antimicrobial activity of essential oils isolated from Algerian Juniperus phoenicea L. and Cupressus sempervirens L. Journal of Medicinal Plants Research, 4(10), 959–964. https://doi.org/10.5897/JMPR10.169
  49. Ramdani, M., Lograda, T., Silini, H., Zeraib, A., Chalard, P., Figueredo, G., Bouchaala, M., & Zerrar, S. (2013). Antibacterial activity of essential oils of juniperus phoenicea from eastern algeria. Journal of Applied Pharmaceutical Science, 3(11), 22–28. https://doi.org/10.7324/JAPS.2013.31105
  50. Mansouri, N., Satrani, B., Ghanmi, M., El Ghadraoui, L., & Aafi, A. (2011). Étude chimique et biologique des huiles essentielles de Juniperus phoenicea ssp. lycia et Juniperus phoenicea ssp. turbinata du Maroc. Biotechnology, Agronomy and Society and Environment, 15(3), 415–424.
  51. Medicines, A. (2007). of Essential Oils of Leaves and Berries of Juniperus Phoenicea L . Grown. 4(4), 417–426.
  52. Keskes, H., Mnafgui, K., Hamden, K., Damak, M., Feki, A. El, & Allouche, N. (2014). In vitro anti-diabetic, anti-obesity and antioxidant proprieties of Juniperus phoenicea L. leaves from Tunisia Asian Pacific Journal of Tropical Biomedicine “1171” 3000, Sfax Tunisie. Tunisia Asian Pac J Trop Biomed, 3000(2), 649–655. https://doi.org/10.12980/APJTB.4.201414B114
  53. Oukadir, Z., Abdellaoui, A., & Lyoussi, B. (2021). Phytochemical , antioxidant and antibacterial study of essential oils of the leaves and fruits of Juniperus Phoenicea. Arabian Journal of Medicinal & Aromatic Plants, 7(3), 321–341.
  54. Jean-Paul Mandin, D. B. et R. T. (2010). Des genévriers de Phénicie millénaires dans les gorges de l’Ardèche. Université de Lyon – Département de Biologie. http://biologie.ens-lyon.fr/ressources/Biodiversite/Documents/la-plante-du-mois/des-genevriers-de-phenicie-millenaires-dans-les-gorges-de-l-ardeche
  55. Fazel Nabavi, S., Habtemariam, S., Ahmed, T., Sureda, A., Daglia, M., Sobarzo-Sánchez, E., & Nabavi, S. M. (2015). Polyphenolic Composition of Crataegus monogyna Jacq.: From Chemistry to Medical Applications. Nutrients, 7, 7708–7728. https://doi.org/10.3390/nu7095361
  56. Cebe, G. E., Kiremitci, S. A., Erdogan, M. A., Konyalioglu, S., Yengin, C., Der, G., & Kilinc, E. (2021). Flavonoid contents antioxidant and neuroprotective activities of crataegus monogyna jacq. leaves and flowers. FRESENIUS ENVIRONMENTAL BULLETIN, 30(9). https://doi.org/20.500.12713/2097
  57. Bahorun, T., Aumjaud, E., Ramphul, H., Rycha, M., Luximon-Ramma, A., Trotin, F., & Aruoma, O. I. (2003). Phenolic constituents and antioxidant capacities of Crataegus monogyna (Hawthorn) callus extracts. Nahrung/Food, 47(3), 191–198. https://doi.org/10.1002/food.200390045
  58. Wyspiańska, D., Kucharska, A. Z., Sokół-Łętowska, A., & Kolniak-Ostek, J. (2017). Physico-chemical, antioxidant, and anti-inflammatory properties and stability of hawthorn ( Crataegus monogyna Jacq.) procyanidins microcapsules with inulin and maltodextrin. Journal of the Science of Food and Agriculture, 97(2), 669–678. https://doi.org/10.1002/jsfa.7787
  59. Thompson, E. B., Aynilian, G. H., Gora, P., & Farnsworth, N. R. (1974). Preliminary Study of Potential Antiarrhythmic Effects of Crataegus monogyna. Journal of Pharmaceutical Sciences, 63(12), 1936–1937. https://doi.org/10.1002/JPS.2600631222
  60. Jalali, A. S., Hasanzadeh, S., & Malekinejad, H. (2012). Crataegus monogyna aqueous extract Ameliorates cyclophosphamide-induced toxicity in Rat testis: Stereological Evidences. Acta Medica Iranica, 50(1), 1–8.
  61. Armin Oskoueian. (2012). Bioactive compounds, antioxidant, tyrosinase inhibition, xanthine oxidase inhibition, anticholinesterase and anti inflammatory activities of Prunus mahaleb L. seed. Journal of Medicinal Plants Research, 6(2), 225–233. https://doi.org/10.5897/jmpr11.1164
  62. Gerardi, C., Frassinetti, S., Caltavuturo, L., Leone, A., Lecci, R., Calabriso, N., Carluccio, M. A., Blando, F., & Mita, G. (2016). Anti-proliferative, anti-inflammatory and anti-mutagenic activities of a Prunus mahaleb L. anthocyanin-rich fruit extract. Journal of Functional Foods, 27, 537–548. https://doi.org/10.1016/J.JFF.2016.09.024
  63. Blando, F., Albano, C., Liu, Y., Nicoletti, I., Corradini, D., Tommasi, N., Gerardi, C., Mita, G., & Kitts, D. D. (2016). Polyphenolic composition and antioxidant activity of the under-utilised Prunus mahaleb L. fruit. Journal of the Science of Food and Agriculture, 96(8), 2641–2649. https://doi.org/10.1002/jsfa.7381
  64. Gerardi, C., Tommasi, N., Albano, C., Blando, F., Rescio, L., Pinthus, E., & Mita, G. (2015). Prunus mahaleb L. fruit extracts: a novel source for natural food pigments. European Food Research and Technology, 241(5), 683–695. https://doi.org/10.1007/s00217-015-2495-x
  65. Akbari, F., Azadbakht, M., Dashti, A., Vahedi, L., Davoodi, A., & Azadbakht, M. (2020). Effect of Prunus Mahaleb L. Seed Extract on Ethylene glycol-and Ammonium Chloride-Induced Urolithiasis in BALB/c Mice. IJMS, 45(2). https://doi.org/10.30476/IJMS.2019.45774
  66. Orlando, G., Chiavaroli, A., Adorisio, S., Delfino, D. V, Brunetti, L., Recinella, L., Leone, S., Zengin, G., Acquaviva, A., Angelini, P., Angeles Flores, G., Venanzoni, R., Cristina Di Simone, S., Di Corpo, F., Mocan, A., Menghini, L., & Ferrante, C. (2021). molecules Unravelling the Phytochemical Composition and the Pharmacological Properties of an Optimized Extract from the Fruit from Prunus mahaleb L.: From Traditional Liqueur Market to the Pharmacy Shelf. Molecules, 26, 4422. https://doi.org/10.3390/molecules26154422
  67. Boroduske, A., Jekabsons, K., Riekstina, U., Muceniece, R., Rostoks, N., & Nakurte, I. (2021). Wild Sambucus nigra L. from north-east edge of the species range: A valuable germplasm with inhibitory capacity against SARS-CoV2 S-protein RBD and hACE2 binding in vitro. Industrial Crops and Products, 165, 113438. https://doi.org/10.1016/J.INDCROP.2021.113438
  68. M. MAHMOUDI, M.A. EBRAHIMZADEH1 , A. DOOSHAN, A. A., & N. GHASEMI, F. F. (2014). Antidepressant activities of Sambucus ebulus and Sambucus nigra. https://doi.org/18: 3350-3353
  69. Schmitzer, V., Veberic, R., Slatnar, A., & Stampar, F. (2010). Elderberry ( Sambucus nigra L.) Wine: A Product Rich in Health Promoting Compounds. Journal of Agricultural and Food Chemistry, 58(18), 10143–10146. https://doi.org/10.1021/jf102083s
  70. Moldovan, B., David, L., Achim, M., Clichici, S., & Filip, G. A. (2016). A green approach to phytomediated synthesis of silver nanoparticles using Sambucus nigra L. fruits extract and their antioxidant activity. Journal of Molecular Liquids, 221, 271–278. https://doi.org/10.1016/J.MOLLIQ.2016.06.003
  71. Porter, R. S., & Bode, R. F. (2017). A Review of the Antiviral Properties of Black Elder ( Sambucus nigra L.) Products. Phytotherapy Research, 31(4), 533–554. https://doi.org/10.1002/ptr.5782
  72. Hawkins, J., Baker, C., Cherry, L., & Dunne, E. (2019). Black elderberry (Sambucus nigra) supplementation effectively treats upper respiratory symptoms: A meta-analysis of randomized, controlled clinical trials. Complementary Therapies in Medicine, 42, 361–365. https://doi.org/10.1016/J.CTIM.2018.12.004
  73. Dawidowicz, A. L., Wianowska, D., & Baraniak, B. (2006). The antioxidant properties of alcoholic extracts from Sambucus nigra L. (antioxidant properties of extracts). LWT – Food Science and Technology, 39(3), 308–315. https://doi.org/10.1016/J.LWT.2005.01.005
  74. Gray, A. M., Abdel-Wahab, Y. H. A., & Flatt, P. R. (2000). Biochemical and Molecular Action of Nutrients The Traditional Plant Treatment, Sambucus nigra (elder), Exhibits Insulin-Like and Insulin-Releasing Actions In Vitro 1. In J. Nutr (Vol. 130). https://academic.oup.com/jn/article/130/1/15/4686073
  75. Viapiana, A., & Wesolowski, M. (2017). The Phenolic Contents and Antioxidant Activities of Infusions of Sambucus nigra L. Plant Foods for Human Nutrition, 72(1), 82–87. https://doi.org/10.1007/s11130-016-0594-x
  76. Mota, A. H., Andrade, J. M., Rodrigues, M. J., Custódio, L., Bronze, M. R., Duarte, N., Baby, A., Rocha, J., Gaspar, M. M., Simões, S., Carvalheiro, M., Fattal, E., Almeida, A. J., & Reis, C. P. (2020). Synchronous insight of in vitro and in vivo biological activities of Sambucus nigra L. extracts for industrial uses. Industrial Crops and Products, 154, 112709. https://doi.org/10.1016/J.INDCROP.2020.112709
  77. Domínguez, R., Zhang, L., Rocchetti, G., Lucini, L., Pateiro, M., Munekata, P. E. S., & Lorenzo, J. M. (2020). Elderberry (Sambucus nigra L.) as potential source of antioxidants. Characterization, optimization of extraction parameters and bioactive properties. Food Chemistry, 330, 127266. https://doi.org/10.1016/J.FOODCHEM.2020.127266
  78. Sidor, A., & Gramza-Michałowska, A. (2015). Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food – a review. Journal of Functional Foods, 18, 941–958. https://doi.org/10.1016/J.JFF.2014.07.012
  79. Chen, C., Zuckerman, D. M., Brantley, S., Sharpe, M., Childress, K., Hoiczyk, E., & Pendleton, A. R. (2014). Sambucus nigra extracts inhibit infectious bronchitis virus at an early point during replication. BMC Veterinary Research, 10. https://doi.org/10.1186/1746-6148-10-24
  80. Młynarczyk, K., Walkowiak-Tomczak, D., & Łysiak, G. P. (2018). Bioactive properties of Sambucus nigra L. as a functional ingredient for food and pharmaceutical industry. Journal of Functional Foods, 40, 377–390. https://doi.org/10.1016/J.JFF.2017.11.025
  81. Torabian, G., Valtchev, P., Adil, Q., & Dehghani, F. (2019). Anti-influenza activity of elderberry (Sambucus nigra). Journal of Functional Foods, 54, 353–360. https://doi.org/10.1016/J.JFF.2019.01.031
  82. Olszewska, M. A., & Michel, P. (2012). Activity-guided isolation and identification of free radical-scavenging components from various leaf extracts of Sorbus aria (L.) Crantz. Natural Product Research, 26(3), 243–254. https://doi.org/10.1080/14786419.2010.537271
  83. Welk, E., De Rigo, D., & Caudullo, G. (2016). Sorbus aria Sorbus aria in Europe: distribution, habitat, usage and threats. European Atlas of Forest Tree Species, pp. e0179d, 174–175. www.naturespot.ork.uk:
  84. Šavikin, K. P., Zdunić, G. M., Krstić-Milošević, D. B., Šircelj, H. J., Stešević, D. D., & Pljevljakušić, D. S. (2017). Sorbus aucuparia and Sorbus aria as a Source of Antioxidant Phenolics, Tocopherols, and Pigments. Chemistry & Biodiversity, 14(12), e1700329. https://doi.org/10.1002/cbdv.201700329
  85. Özar, T., Özalp, M. F., & Eroğlu, E. (2020). Investigation of the in vitro Anticancer Activity of Sorbus aria Extract on Prostate Cancer. Academic Perspective Procedia, 3(1), 228–235. https://doi.org/10.33793/acperpro.03.01.50
  86. Petkova, N. T., Ognyanov, M. H., Vrancheva, R. Z., & Zhelev, P. (2020). Phytochemical, nutritional and antioxidant characteristics of whitebeam (Sorbus aria) fruits [pdf]. Acta Scientiarum Polonorum Technologia Alimentaria, 19(2), 219–229. https://doi.org/10.17306/J.AFS.2020.0786
  87. Khayalethu, N. (2013). Identifying bacteria and studying bacterial diversity using the 16S ribosomal RNA gene-based sequencing techniques: A review. African Journal of Microbiology Research, 7(49), 5533–5540. https://doi.org/10.5897/AJMR2013.5966
  88. Majić, B., Šola, I., Likić, S., Cindrić, I. J., & Rusak, G. (2015). Characterisation of sorbus domestica l. bark, fruits and seeds: Nutrient composition and antioxidant activity. Food Technology and Biotechnology, 53(4), 463–471. https://doi.org/10.17133/ftb.53.04.15.4001
  89. Matczak, M., Marchelak, A., Michel, P., Owczarek, A., Piszczan, A., Kolodziejczyk-Czepas, J., Nowak, P., & Olszewska, M. A. (2018). Sorbus domestica L. leaf extracts as functional products: phytochemical profiling, cellular safety, pro-inflammatory enzymes inhibition and protective effects against oxidative stress in vitro. Journal of Functional Foods, 40, 207–218. https://doi.org/10.1016/J.JFF.2017.10.046
  90. Brindza, J., Červeňáková, J., Tóth, D., Bíro, D., & Sajbidor, J. (2009). UNUTILIZED POTENTIAL OF TRUE SERVICE TREE (SORBUS DOMESTICA L.). Acta Horticulturae, 806, 717–726. https://doi.org/10.17660/ActaHortic.2009.806.89
  91. Rutkowska, M., Olszewska, M. A., Kolodziejczyk-Czepas, J., Nowak, P., Owczarek, A., Cardoso, S. M., & Fazio, A. (2019). molecules Sorbus domestica Leaf Extracts and Their Activity Markers: Antioxidant Potential and Synergy Effects in Scavenging Assays of Multiple Oxidants. https://doi.org/10.3390/molecules24122289
  92. Tolar, T., Vovk, I., & Jug, U. (2021). The use of Cornus sanguinea L. (dogwood) fruits in the Late Neolithic. Vegetation History and Archaeobotany, 30(3), 347–361. https://doi.org/10.1007/s00334-020-00788-w
  93. Popović, Z., Bajić-Ljubičić, J., Matić, R., & Bojović, S. (2017). First evidence and quantification of quercetin derivatives in dogberries (Cornus sanguinea L.). Turkish Journal of Biochemistry, 42(4). https://doi.org/10.1515/tjb-2016-0175
  94. Out, W. A. (2008). Selective use of Cornus sanguinea L. (red dogwood) for Neolithic fish traps in the Netherlands. Environmental Archaeology, 13(1), 1–10. https://doi.org/10.1179/174963108X279184
  95. Iannuzzi, A. M., Giacomelli, C., De Leo, M., Russo, L., Camangi, F., De Tommasi, N., Braca, A., Martini, C., & Trincavelli, M. L. (2021). Cornus sanguinea Fruits: a Source of Antioxidant and Antisenescence Compounds Acting on Aged Human Dermal and Gingival Fibroblasts. Planta Medica. https://doi.org/10.1055/a-1471-6666
  96. Stanković, M. S., & Topuzović, M. D. (2012). Acta Botanica Gallica In vitro antioxidant activity of extracts from leaves and fruits of common dogwood (Cornus sanguinea L.). https://doi.org/10.1080/12538078.2012.671650
  97. Truba, J., Stanisławska, I., Walasek, M., Wieczorkowska, W., Wolí Nski, K., Buchholz, T., Melzig, M. F., & Czerwí Nska, M. E. (n.d.). Inhibition of Digestive Enzymes and Antioxidant Activity of Extracts from Fruits of Cornus alba, Cornus sanguinea subsp. hungarica and Cornus florida-A Comparative Study. https://doi.org/10.3390/plants9010122
  98. Oskay, M., & Sarı, D. (2007). Antimicrobial Screening of Some Turkish Medicinal Plants. Pharmaceutical Biology, 45(3), 176–181. https://doi.org/10.1080/13880200701213047
  99. Ansari Samani, M., Hosseinzdeh Samani, B., Lotfalian, A., Rostami, S., Najafi, G., Fayyazi, E., & Mamat, R. (2020). The feasibility and optimization of biodiesel production from Celtis australis L. oil using chicken bone catalyst and ultrasonic waves. Biofuels, 11(4), 513–521. https://doi.org/10.1080/17597269.2019.1628482
  100. B. Semwal, Ruchi; K. Semwal, D. (2012). Analgesic and Anti-Inflammatory Activities of Extracts and Fatty Acids from Celtis australis L. The Natural Product Journal, 2, 323–327.
  101. Ota, A., Višnjevec, A. M., Vidrih, R., Prgomet, Ž., Nečemer, M., Hribar, J., Cimerman, N. G., Možina, S. S., Bučar-Miklavčič, M., & Ulrih, N. P. (2017). Nutritional, antioxidative, and antimicrobial analysis of the Mediterranean hackberry ( Celtis australis L.). Food Science & Nutrition, 5(1), 160–170. https://doi.org/10.1002/fsn3.375
  102. Ozturk, A., Yarci, C., & Ozyigit, I. I. (2017). Biotechnology & Biotechnological Equipment Assessment of heavy metal pollution in Istanbul using plant (Celtis australis L.) and soil assays Assessment of heavy metal pollution in Istanbul using plant (Celtis australis L.) and soil assays. https://doi.org/10.1080/13102818.2017.1353922
  103. Filali-Ansari, N., El Abbouyi, A., Kijjoa, A., El Maliki, S., & El Khyari, S. (2016). Antioxidant and antimicrobial activities of chemical constituents from Celtis australis. Der Pharma Chemica, 8(4), 338–347.